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Abstract-In this paper the problem ofshearing an infinite slab ofMooney-Rivlin material subjected
to temperature differentials across its thickness is investigated employing a generalization of the
classical Mooney-Rivlin model. Here, the properties that go into characterizing this nonlinear solid
are assumed to depend on the temperature. Thus, in addition to satisfying the equilibrium conditions,
the energy equation is also solved assuming Fourier's law of heat conduction. Results are displayed
for isothermal and temperature dependent conditions in order to discuss the effect of the temperature
on the appearance of "boundary layer" type of solution.

I. INTRODUCTION

Many investigations have been performed aimed at describing the mechanical behavior of
elastic solid materials under the influence of temperature variations. However, most of the
work accounting for this interaction between thermal and mechanical effects, has had its
foundation on the assumption of small deformations (linear theory). This is in part due to
the great complexity involved in dealing with the thermo-mechanical behavior of nonlinear
elastic solids. Of the few studies that have been carried out in finite thermoelasticity, one
that is quite exhaustive is the investigation by Chadwick (1974). More recently, Ogden
(1992) discussed the thermoelastic modeling of nonlinear solids and Maneschy et al. (1993)
noted the presence of"boundary layers" in the solution ofneo-Hookean materials subjected
to inhomogeneous expansion and temperature gradients.

The study of inhomogeneous deformations in nonlinear materials has lately caught a
great deal of attention. In the analysis of such problems, solutions have been found for
materials following a specific constitutive theory (neo-Hookean, Mooney-Rivlin, etc.). This
approach has become very common following the work of Ericksen (1954-1955), who
proved that universal solutions are possible in general compressible materials only if the
deformations are homogeneous. He also exhibited specific classes of nonhomogeneous
deformations that are possible for incompressible materials. Thus, if we are interested in
the solution of a problem dealing with inhomogeneous deformations, we have to discuss it
within the context of some subclass of isotropic elastic solids. Many interesting solutions
using this approach have been documented recently, but only for isothermal conditions
(Carrol, 1977; Antman and Guo, 1984; Rajagopal and Wineman, 1985; Rajagopal et aI.,
1986; Haughton, 1992; Rajagopal and Tao, 1992). An interesting feature reported in some
ofthese works (cf. Haughton, 1992 ; Rajagopal and Tao, 1992), is the presence of"boundary
layers" for the deformation field, in that, adjacent to the boundary the deformation is
nonhomogeneous while it is essentially homogeneous in the core. This behavior is believed
to be the result of the material nonlinearities incorporated in the models.

It is known that the material properties ofrubber-like solids are temperature dependent.
These materials shear soften or shear harden as the temperature increases or decreases,
respectively. Since this dependence is observed even at low temperatures, it would seem
appropriate, on studying inhomogeneous deformations in finite elasticity, to employ a
constitutive equation that would take this effect into account. Moreover, it is quite possible
that temperature dependent (hence deformation dependent) models would predict, if it is
the case, a more pronounced "boundary layer" in the deformation field than that found
under isothermal conditions. One of the objectives of this work is to study such a possibility.
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In this paper we analyse the problem wherein an infinite slab of a Mooney-Rivlin
material is subjected to an inhomogeneous shearing at its lower surface as well as a
temperature variation across its thickness. This is an extension of the work of Rajagopal
et al. (1986) on the isothermal shearing of a neo-Hookean slab. The constitutive model
used is a generalization ofthe classical Mooney-Rivlin theory, in that, the material properties
that characterize this model are assumed to depend on the temperature. In addition to
complying with the equilibrium conditions it is ensured that the energy equation is satisfied.

2. PROPORTIONAL SHEARING OF A SLAB OF MOONEY-RIVLIN MATERIAL

Let X, Y, Z denote the coordinates of a particle in its undeformed state and x, y, z the
coordinates of the same particle in its deformed position. If the slab is sheared along the
plane Z =0 in such a manner that there is displacement only in X-coordinate direction, the
deformation can be represented by :

x = XI(Z),

y= Y,

z = Zg(Z).

Furthermore suppose the temperature (J is of the form :

(J = (J(Z) = t!(z).

The deformation gradient tensor F is given by:

(Ia)

(Ib)

(Ic)

(2)

[

I 0
F = 0 I

o 0

X!, ]o ,
(Zg),

(3)

where the prime denotes differentiation with respect to Z. If the deformation is assumed to
be isochoric (det F = I), we will have:

(Zg), = g+Zg' = I/f

The left Cauchy-Green deformation tensor B = FFT is:

(4)

with inverse :

[

/
2 +(X!,) 2 0

B= 0 I

X!'II 0

X!'/.1o ,
liP

(5)

-X!'II ]
o .

P+(X!')2
(6)

For incompressible isotropic hyperelastic materials, i.e. materials in which the stress is
derivable from a strain energy density, it follows that:
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oW oW I
T = -pI+2-B-2-B- ,

all 012
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(7)

where II and 12 are the principal invariants, namely II = trB and 12 = trB- I, and pI is the
indeterminate part of the stress due to the constraint of incompressibility.

We shall consider a generalization of the Mooney-Rivlin constitutive model (Truesdell
and Noll, 1965), where the shear modulus, Ji., is assumed to depend on the temperature. In
this case, the strain energy has the form :

with Ji.(0) > 0 and -! ~ {J ~ !. The corresponding constitutive equation is:

T = -pI+<!+{J)Ji.(0)B-(!-fJ)Ji.(0)B- 1
,

which gives the stress components:

(8)

(9)

I
Txx = -p(X, Y, Z, 0) + (!+ {J)Ji.(0)(f2 + X 2f'2) - (!- {J)Ji.(0)P' (10)

T yy = -p(X, Y,Z,0)+2Ji.{J, (11)

1
Tzz = -p(X, Y,Z, 0)+ (!+{J)Ji.(0)P -(!-{J)Ji.(0)(f2+X2f'2), (12)

Txz = Ji.(O)Xf'/f, (13)

Txy = Tyz = 0, (14)

where the subscripts on T denote the orientation of the stress components.

3. EQUATIONS OF EQUILIBRIUM

We shall find it convenient to write the equilibrium equations in terms of the reference
coordinates X, Y, Z. In virtue of the chain rule:

where oXp/OXj = (F-I)pj. It follows from (3) and (4) that:

(15)

-Xf']o .
f

(16)

From (16) and (15)

~ oTxx _Xl"oTxz fOTxz = 0
f oX J oX + oZ '

oTyy

oY =0,

~ oTxz _xr,oTzz fOTzz = 0
f oX J oX + oZ .

Substituting (10)-(14) into the equations above, one finds:

(17)

(18)

(19)
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where:
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(20)

(21)

(22)

andp = p(X, Z, 0).
From equation

a2p a2p
axaz= az ax

we deduce that the function f must satisfy:

(23)

One interesting feature of this equation is that it is independent of the parameter fJ.
Therefore, the solution for the displacement function f found in a Mooney-Rivlin material
subjected to the deformation given by equations (1) would be the same as that for a more
special case such as the neo-Hookean material (fJ = ~). It should be observed that eqn (23)
reduces to that found in Rajagopal et af. (1986) for isothermal conditions (II' = II" = 0).

Equations (20) and (21) can be integrated, with the aid of (23), to give the pressure
field:

(24)

where C is an arbitrary constant due to the incompressibility condition.

4. ENERGY EQUAnON

Let us now tum our attention to the energy equation:

de d'p dt = T'L- Ivq+pr, (25)

where p is the density, e is the specific internal energy, L is the gradient of the velocity, q is
the heat flux vector and r is the radiant heating.

At this point it would be necessary to specify a constitutive equation for the internal
energy, e, in order to completely characterize the thermoelastic response of the material.
According to Eringen (1965), one can specify constitutive relations for the Helmholtz free
energy, the specific entropy and the heat flux. For the problem in discussion, it can be
assumed that the entropy and the free energy depend on the invariants of the deformation
tensor and the temperature:

(26)

with the specific energy being related to these quantities by the expression:
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The heat flux is given by Fourier's law of heat conduction as:

q = -k(U) grad U,
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(27)

(28)

where k is the thermal conductivity. Since the deformation and temperature fields are
independent of time, it follows from (I), (2), (26), (27) and (28) that, on neglecting the
radiant heating, the energy equation becomes:

(29)

We shall assume that the thermal conductivity is a constant. This assumption is not
inconsistent with the assumption that J.l is temperature dependent, only that k is less sensitive
to variations in temperature. Thus (29) reduces to :

(30)

or

(31)

which, from (Ic) and (2), implies:

(32)

If we restrict our analysis to problems for which the plane Z = 0 is held at constant
temperature (}o and the plane Z = H at temperature (}H, eqn (32) becomes:

(33)

where H is the initial slab thickness and g(H) is the value of the displacement function at
the upper surface. Equations (4), (23) and (33) constitute a system of coupled differential
equations which have to be solved for the functions f and g. This requires a choice for the
shear modulus J.l«(}) , which is the variable connecting those three equations. Here we
assume two forms of the shear modulus, one in which it increases with temperature (shear
hardening), i.e.

J.l«(}) = A(}, (34)

and the other in which the shear modulus decreases with temperature (shear softening),

J.l«(}) = B-C(}, (35)

where A, Band C are positive constants and (} is the absolute temperature. This linear
dependence of the shear modulus on temperature has been widely used in discussing the
thermoelastic modeling of rubber-like materials (Treloar, 1975). The equations above can
also be written, using (33), as:
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[(OH-OO) J (36)J.t(Z) = A Hg(H) Zg+Oo ,

or

[(OH-OO) J (37)J.t(Z) = B-C Hg(H) Zg+Oo .

Equations (36) or (37) when substituted into (23) give rise to the final form for the
coupled differential equations to be solved. The numerical solution of these equations is
discussed in the next section.

5. NUMERICAL SOLUTION AND DISCUSSION OF RESULTS

Define the following set of nondimensional variables:

(38)

For these nondimensional quantities, it can be shown that the final system ofequations
is:

1111 =I'f" + 2Q [1'2 -f"J
I 1(l+QZg) I

Zg' +g = Ilf,

with

if the material shear hardens with temperature (equation 34), or:

(39)

(40)

(41)

(42)

ifit shear softens as the temperature decreases (equation 35). In these equations h represents
the position of the upper surface of the slab on the deformed configuration. Therefore, the
temperature parameter Q is, in general, unknown. Note also that if the temperature is held
constant throughout the thickness (Q = 0), the system (39) and (40) uncouples and the
function I is found independently. The bars were dropped from the equations above for
simplicity.

We shall first study the problem where the plane at Z = 0 is sheared by a constant
value such that:

which from the incompressibility condition (40) gives:

g(O) = 11K!.

Furthermore, if the layer Z = I is held fixed:

(43)

(44)
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l(l) = 1

g(l) = h/H = 1.

(45)

(46)

Boundary condition (46) simplifies the search for the solution, since it reduces the
variable Q to a known value that depends both on the material model chosen and the
temperature of the slab surfaces. The coupled differential equations (39) and (40), for a
given value of Q, can be expressed as:

1'" =/1 (/",/"j,g,Z),

g' = 12(/,g, Z); 0 ~ Z ~ 1,

(47)

(48)

subjected to the boundary conditions (43)-(46). This problem can be easily transformed
into an initial boundary value problem which can be solved using the Runge-Kutta method.
Initial values are assumed for /,(0) and 1"(0) and the equation is numerically integrated
to Z = 1, and checked against the boundary conditions (45) and (46) for /(1) and g(l).
An iterative procedure is used, namely the Newton-Raphson scheme, and this procedure
is terminate when the error tolerance 10- 7 is reached.

Let us first consider the isothermal problem. In this case Q = O. The displacement
function I(Z) vs the nondimensional coordinate along the slab thickness is displayed in
Fig. 1, for different values of the lower surface shearing constant, K\. For K\ > 1 or
K[ < 1 the surface Z = 0 is sheared inwards or outwards, respectively. The value K 1 = 1
corresponds to the undeformed state. Material points close to the lower surface are displaced
to the right (K1 > 1) or to the left (K[ < 1) of a vertical line 1 = 1 corresponding to the
nondeformed configuration. For material points near the plane Z = 1an opposite behavior
is observed. This is a consequence of the incompressibility condition. In all cases we find
the deformation to be inhomogeneous everywhere.
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Fig. 1. Variation of f with the shearing constant K. for problems in which displacement is specified
at the slab upper surface. (Q = 0.)
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Fig. 2. Variation of f with the temperature parameter Q for problems in which displacement is
specified at the slab upper surface. (K1 = 1.15.)

Next we investigate the effect of the temperature on the solution while maintaining K 1

fixed. Figure 2 shows the variation of I(Z) with the temperature parameter Q, for
K 1 = 1.15. It is observed that when the value of Q increases we approach a "boundary
layer" structure in which the inhomogeneity of the deformation is confined to the region
close to the plane Z = O. It should be noted that Q > 0 implies en > eo or en < eo,
depending on the model assumed for the shear modulus. If the material shear hardens with
the temperature [model (34)], we can see that a "boundary layer" is developed adjacent to
the colder boundary. However, for a shear softening material, expressed by (33), this
"boundary layer" is generated adjacent to the hotter boundary. This is, ofcourse, in keeping
with our expectations.

Additionally to the dimensionless quantities given by (38), let us define the non­
dimensional shear stress component as :

t Txz - X
---' X=H'xz - J!(O)X' (49)

From eqns (13) and (38), it can be shown that the stress component above reduces to :

T _ (1 +QZg)f'
xz - 1 ' (50)

with the bars being again dropped for simplicity.
Figure 3 depicts the shear stress profile for different values of the temperature parameter

and K, = 1.15. Negative stresses are developed at lower layers of the slab while positive
stresses are observed towards the upper surface. Higher stresses are found as the temperature
gradient increases.

As a second example we discuss the problem in which the shear component of the
traction vector has a prescribed value at the plane Z = 1. For this case, the boundary
condition:
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Fig. 3. Stress variation with the temperature parameter Q for problems in which displacement is
specified at the slab upper surface. (K, = 1.15.)

T - (1 +Q)f'(I) - K
xz - f(l) - 2, (51)

with K 2 constant, should replace the boundary condition (45) used in the problem discussed
before, while equations (43), (44) and (46) remain the same. Figures 4-6 show the results
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Fig. 4. Variation of f with the shearing constant K1 for problems in which stress is specified at the
slab upper surface. (Q = 0.)
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Fig. 5. Variation of f with the temperature parameter Q for problems in which stress is specified
at the slab upper surface. (K, = 1.10.)

found assuming K 2 = O. This corresponds to a problem in which the upper surface of the
slab is free to move along the horizontal direction. The displacement function for isothermal
conditions and different values of the shearing constant is displayed in Fig. 4. As noted in
the previous example, the deformation is nonhomogeneous at all positions across the
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Fig. 6. Stress variation with the temperature parameter Q for problems in which stress is specified
at the slab upper surface. (K, = 1.10.)
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plate thickness. However, if the temperature dependence is incorporated into the problem,
"boundary layer" type ofsolution is again observed as the temperature differential increases.
This can be seen from Fig. 5. The stress distribution is depicted in Fig. 6 for various values
of the temperature gradient and K 1 = 1.10. Only negative stresses are developed in the slab
as the result of the upper surface being shear stress free.
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